

Greenhouse gas emissions from the barnyard: Linking animal production to global climate change

**M.M. Getso¹, A. B. Abdullahi², S. K. Muhammad³, A. M. Barde⁴, A. Iliyasu⁵,
B. R. Gandi¹ and N.G. Hayatu⁶**

¹Department of Animal Science, Kaduna State University (KASU), Nigeria

²Department of Animal Science, Federal University of Kashere, Gombe State, Nigeria

³Department of Animal Production and Technology, Audu Bako College of Agriculture Dambatta, Nigeria

⁴Department of Animal Science, Federal University Dutse, Jigawa State, Nigeria

⁵Department of Biological Science, Kaduna State University (KASU), Nigeria

⁶Department of Soil Science and Land Resources Management, Usman Danfodiyo University Sokoto, Nigeria

Abstract

The livestock production sector is significantly contributing to global greenhouse gas emissions, thus playing a vital role in climate change. This review examined the major sources of greenhouse gases (GHGs) from the livestock sector basically methane (CH_4) produced from enteric fermentation, nitrous oxide (N_2O) released from chemical fertilizers and organic manure, and carbon dioxide (CO_2) released due to land use change and energy consumption with ruminants animals (cattle in particular) as the primary emitters due to their digestive processes. Literature revealed that ruminant animals produced for about 7.8 million tons of CH_4 in 2000 which might probably rise to 11.1 million tons by 2030. Agricultural land management is the major source of N_2O emissions in the Sub-Saharan Africa, causing approximately 64% of the total N_2O emissions in 2020, which is likely followed by the application of synthetic fertilizers to urban soils. The review has further examined the impact of feed production, manure management and energy consumption on the environment across the various livestock production systems. The strategies of mitigation include diet modifications, genetic improvement, effective manure handling, production of biogas, and modified practices of land management. This research will impart information on policy decisions and support the practices that will sustainably minimize the carbon footprint of livestock production sector.

Article Information

Keywords

Animal production, barnyard, carbon footprint, climate change, greenhouse gas emissions

Corresponding author

N.G. Hayatu

naifiu.hayatu@udusok.edu.ng

Article History

Received: August 12, 2025

Accepted: November 21, 2025

Published: December 30, 2025

Article can be accessed at
www.aabrnjalaa.org.ng

INTRODUCTION

Climate Change and the Role of Agriculture

Unfortunately, an uninterrupted increase in the concentration of GHGs in the world causes the effect of greenhouse leading to

the risk of global warming and changes to the climate (Gopalakrishnan *et al.*, 2019). Globally, there is an increased GHG emission by 75% in the last 30 years (Outhwaite *et al.*, 2022). Presently, carbon dioxide (CO_2) account for about 76% of the

How to cite this article:

M.M. Getso, A.B. Abdullahi, S.K. Muhammad, A.M. Barde, A. Iliyasu, Gandi, B.R. Gandi and N.G. Hayatu (2025). Greenhouse gas emissions from the barnyard: Linking animal production to global climate change *Annals of Anim. Bio. Res.*, 5(1): 35-47

total GHGs, while methane (CH_4) contributes about 16%, whereas nitrous oxide (N_2O) leveled up to 6% (Crippa *et al.*, 2021). The main instrumentals to the GHGs emissions within the corridor of agriculture are energy consumption, in processing of food and operating farm inputs in addition to the agricultural land use (Chalise and Naranpanawa, 2016). Looking in to the emissions sources of GHG from agriculture like digestive fermentation form ruminants and emitted CO_2 in farm operation is crucial in developing the most proper downplay and adaptation generalship such as sustainable farming with reduced emissions of GHGs from energy use in agriculture. Several factors indicated that the levels of atmospheric GHGs, specifically CO_2 and CH_4 gases, already skyrocketed over the previous decades due to the increase in agricultural practices (such as fertilizer application), forestry practices (such as deforestation), and domestication of farm animals (Maindi *et al.*, 2020).

GHGs Emission from Animal Husbandry

There is an increase in enlightenment within the communities dealing with researches and policy-making that an increased in the production and consumption of animals products is helping to a wide range of an alarming environmental threat globally, notably being the sector's significant contribution to emissions causing climate change. Presently there is a high increase of interest in understanding the relationship of livestock rearing and the scenario of climate change and this has been encouraging a higher number of researches (Aydinalp, 2010). Consequently, this study reviewed the contribution of livestock rearing to the change of climate globally and the

strategies of mitigation.

Objective

This study aimed to identify the major sources of emissions within livestock systems and evaluate potential strategies for mitigating their environmental impact. The specific objective of this review however, was to analyze the contribution of livestock production sector to global GHG emissions and its role in climate change.

Scope of the Review

The scope of the review encompasses both intensive and extensive livestock systems across different geographic regions, assessing their respective contributions to global GHG emissions. It also evaluated the strategies of mitigation directed towards decreasing the environmental footprint of animal agriculture, including dietary changes, improved manure management, technological innovations, and policy interventions. By synthesizing current scientific findings, this review seeks to inform stakeholders, including policymakers, producers, and researchers, about the environmental implications of livestock production and support efforts toward more sustainable agricultural practices.

MAJOR GHGS FROM LIVESTOCK SYSTEMS

Methane (CH_4) from enteric fermentation

Rumen fermentation mainly occurs in the digestive tract of ruminant animals under the control of rumen microorganisms by breaking the plant materials ingested by the animals to produce methane which is released through exhaling, belching, and other means. This account for the largest share of emissions from ruminants animals

source (Beauchemin, 2009). Domesticated farm animals (such as cattle, swine, sheep, and goats) naturally produce CH_4 as crucial part of their digestive processes (Robinson, 2020). As these domestic animals are reared by human being as source of food and other purposes, GHG emissions from them are considered to be human-related (Smith *et al.*, 2016).

About 35 - 40% of annual methane emission was resulted from livestock production sector (Steinfeld *et al.*, 2006) due to the enteric fermentation in ruminant animals and from animal manure. The emissions of methane are influenced by a myriad of certain factors, which includes the age of the animal, body weight, quality of feed offered, digestive efficiency, and physical exercise (Paustian *et al.*, 2006; Steinfeld *et al.*, 2006). Even though, each animal normally produces relatively little amounts of methane gas (U.S. EPA, 2007b), the more than one billion (> 1 billion) ruminants reared yearly account to a noticeable methane source (FAO, 2008). Certainly, rumen fermentation produces methane emission for about approximately 86 million metric tons globally (Steinfeld *et al.*, 2006). The GHG emissions resulted from animal production sector in particular and agricultural practices in general are expected to increase as food production cost grows to keep pace with a challenge of growing world which population is expected to reach 8.3 billion by 2030 and 9.1 billion by 2050 as estimated by (UN, 2008).

In some developing countries especially in Africa, there is an observed increased in methane emission which resulted from the increased livestock production. Herrero *et al.* (2008) reported that in Africa, there was

an estimation that cattle, sheep and goat produced for about 7.8 million tons of methane in 2000 which might probably rise to 11.1 million tons by 2030. As according to the report of Bruinsma (2003), if the linear correlation of methane emission and the population of livestock population persist, it could be declared that methane emission from livestock production sector may skyrocket to 60% by 2030 globally.

Nitrous oxide (N_2O) from manure and fertilizer use

Even though 70% of anthropogenic emissions of N_2O result from combined crop and livestock agriculture, domestic livestock production, including growing feed crops, accounts for about 65% of N_2O emissions globally (Steinfeld *et al.*, 2006). The report of Paustian *et al.* (2006) showed that the management of manure from farm animals accounts for about 6% of N_2O emissions from agriculture. The N_2O emissions from pig manure alone might globally account for almost half of the total GHG emissions from livestock manure (Steinfeld *et al.*, 2006).

Numerous management activities of agricultural land in Sub-Saharan Africa like synthetic or organic fertilizers application and other cropping practices, the manure management, burning of agricultural residues generate N_2O emissions (Borrelli *et al.*, 2020; Popp *et al.*, 2017). Agricultural land management is the major source of N_2O emissions in the Sub-Saharan Africa, causing approximately about 64% of the total N_2O emissions in 2020, which is likely be followed by the application of synthetic fertilizers to urban soils (lawns, golf courses) and forest lands (Adams and Acheampong, 2019).

Carbon dioxide (CO₂) from energy-use and land use change

Changes in land use and use of energy in agricultural practices have a serious influence on the carbon sequestration and GHG emissions in Sub-Saharan Africa (Mullins *et al.*, 2018). Normally, plants used to absorb atmospheric CO₂ and from many other natural ecosystems evolved over thousands of years could store enormous amounts of carbon (Outhwaite *et al.*, 2022). Abbass *et al.* (2022) and Tongwane and Moeletsi (2018) reported deforestation as the main cause of climatic change in Ethiopia, Sudan, Chad, and Niger. Close to that, high tillage practices are a local land-use technique in Mali, Guinea, and Mauritania that significantly contribute to climatic changes by regular disruption of the topsoil (Tongwane and Moeletsi, 2018). These practices increase CO₂ and CH₄ emissions by inducing the top soil organic matter decomposition and at the same time soil erosion (Ngarava *et al.*, 2023). Because of that, forest practices and woodland management have also enormously influenced the concentration of atmospheric GHGs thereby resulting in the climatic change (Robinson, 2020).

Furthermore, agricultural energy use, such as a use of tractor for land clearing, machinery for fertilizer application, and other tillage practices in some part of Southern African nations like Zambia, Zimbabwe, Namibia, and Botswana, have significantly altered the nitrogen and carbon cycles, contributing to GHG emissions and climate change (Davis-Reddy, 2018). Furthermore, in Western African countries (such as Nigeria, Ghana, Togo, Burkina Faso, and Senegal), organic farming play a vital role in contributing a significant level of GHG emissions due to a

poor management strategy of crop residue as the agricultural wastes in these countries are usually burnt publicly or left for the grazing of farm animal (Ngarava *et al.*, 2023).

Sources of GHGs by production type

Ruminants

Recently, there is a global rise in public concern about dairy livestock GHG emissions and their contribution to global warming and climatic change (Vázquez-Carrillo *et al.*, 2020). A study has revealed that an increased in CH₄ gas emissions can be caused substantially by animal farming (La *et al.*, 2028). Composting manure and rumen microbial fermentation produce methane by which the animal expels from the rumen through gas eructation (Hardan *et al.*, 2022).

Yearly, ruminant animal is believed to release between 80 and 95 million tons of CH₄ gas globally (Patra, 2014). Methane (CH₄) production also represents a loss of certain amount of energy available to the host ruminant, mostly accounting for about a range of 2% and 12% of the total available energy (Bekele *et al.*, 2022). Ruminants such as cattle and sheep mostly contribute to the GHG emissions in agriculture, estimating for up to 18% of the global total GHG emissions, usually in the form of rumen methane (Herrero and Thornton, 2013). Cattle are mostly considered as food-producing animals due to their higher contribution to the sector's GHG emissions, methane in particular (Aan den Toorn *et al.*, 2020). The stomach fermentation processes normally produce for about more than 90% of CH₄ gas emissions from farm animals and 40% of agricultural GHG emissions (Tubiello *et al.*, 2013).

The Intergovernmental Panel on Climate Change (IPCC) and Food and Agriculture Organization (FAO) of the United Nations (UN) has a view that, a cow that's fully developed, can emit a methane gas of up to 500 liters per day approximately accounting for 3.7% of the total GHG emissions (Tubiello *et al.*, 2013).

Non-Ruminant Animals

Globally, pigmeat approximately accounts for about 35% of the meat supply, with over 747 million tons of carbon dioxide (CO₂) emissions annually. Piggeries GHG emission is originated from animals through the exhalation of CO₂ and CH₄ enteric fermentation, and from farm manure. The amount of the CO₂ gas exhalation normally depends on the physiological status of the animal, the body weight (BW), the level of production and the feed intake of the concerned animals. The principal enteric CH₄ (E-CH₄, pig) is related to dietary fibre intake and the capacity of the pig's hindgut to fermentation. The pigmeat industry was accounted to have emitted 26.6 MMT CO₂e or 0.34% in US (US EPA Greenhouse Gas Inventory, 2015). According to the report of Ersoy and Ugurlu (2020), Turkey birds usually produce 33.85 MT of carbon dioxide equivalent (CO₂-eq), in addition to enteric fermentation and management system of manure in 2015 (IPCC, 2006).

PATHWAYS LINKING ANIMAL HUSBANDRY TO CLIMATE CHANGE

Manure Management

There is a significant contribution of manure in the emissions of CH₄ and N₂O. The decomposition of organic substances in the absence of air is normally accompanied with releases of methane gas, and the

decomposition of ammonia releases nitrous oxide. Manure contained two chemical components; an organic substance and nitrogen content which are responsible for the emission of N₂O in the process of storage and processing (Grossi *et al.*, 2019). Soil emission is considered as the highest manure-related N₂O in relation to manure application (Steinfeld *et al.*, 2006). In addition to that, moisture, animal diet, temperature and waste management are considered as other factors affecting emissions from manure.

Feed Production

Feed production emits gases such as CO₂, N₂O, and CH₄. Production of feed, its processing and transport account for about 45% of total emissions related to livestock. Of all these, nitrogen oxide derived from fertilization of feed crops and methane released from the application of manure to pasture account for about 50%, while other related land use change practices generate about 25% of the total emission (Gerber *et al.*, 2013). Carbon dioxide emission spring up from fertilizers and pesticides production for feed crops, transportation and processing of feeds, energy used in the production process, and other changes that are associated with land use.

Land Use Change

Land use change is also livestock-related indirect way of generating GHG emissions. According to the report of the Gerber *et al.* (2013), about 9.2% of the total livestock-related GHG emissions are due to land use change. Globally, land for agricultural purposes covered 38% of the total land surface, in which livestock sector covers about 2/3 of the total land (FAO, 2021). To meet the feed demand of the ever-increasing livestock sector therefore, the

area under grazing is predicted to cover about 70% of the total land under agriculture (Yitbarek, 2019).

Formerly, an increased in livestock and feed production has enormously affected the land use in relation to the natural carbon cycle (Rojas-Downing *et al.*, 2017). The report of the Steinfeld *et al.* (2006) revealed that increased pasture and feed crop production are the main cause of deforestation which consequently accounts for approximately 8% of total anthropogenic CO₂ emissions.

Energy Consumption

The emissions of CO₂ come from energy consumption, majorly related to the use of fossil fuel. The emissions related to energy in livestock sector, occur throughout the supply chain ranging from fertilizer production, operating machinery, and feed and livestock transportation. Within the farm, energy from animals includes that used for heating/cooling, ventilation, illumination, and milking. Production of feed in upstream requires energy in the production process, drying, and transport of the commodity. Energy in the downstream is normally used in processing the livestock commodities, packing and in transporting the final products to retailers. The total amount of energy consumed along the supply chain of livestock accounts for about 25% of total GHG emissions in the sector (Gerber *et al.*, 2013).

MITIGATION STRATEGIES IN LIVESTOCK SYSTEM

A lessen strategies exist in nature to cushion the GHG emissions from the livestock sector. The report of Gerber *et al.* (2013) ascertain that the variability of the intensities of livestock emission ranging

from the system of production, regions and the potential of mitigation relies within the gap of management techniques resulting in the lowest and highest emission intensities. They projected the possibility of reducing GHG emissions resulting from the livestock sector to the minimum of 18% provided that the producers in the system, region, and climate agreed to accept and practices the presently applied techniques by the uppermost 25% of producers with the lowest possible intensity of GHG emission and 30% if techniques will be employed by barely the top 10% (FAO, 2013).

Dietary Modifications and Feed Additives

The rapid changes in the composition of the animal diet can reduce the production of CH₄ up to at least 30% depending on the level of variation and the nature of the intervention (Benchaar *et al.*, 2001). Giving altered diets may not only increase the forage quality but also target the direct process of methanogenesis or alter the mechanism of metabolism, thereby leading to a decreased methanogenesis. A feed supplements with a promising value for reducing CH₄ and CO₂ emissions from farm animals is organic acid, which act by influencing the formation of propionic acid in the rumen (Castillo *et al.*, 2004). Propionate precursors can be added in the diet as it reduced the production of CH₄ though there is a variation in the reductive pathways of the organic acid sources (McAllister and Newbold, 2008). Some plants contain a varied number of the classes of secondary metabolites that can be used as feed additives or ingredients that can reduce the GHG emission from livestock (Salem *et al.*, 2014). The inclusion of tannins directly from plants or as plant extracts, in ruminant diets, has been

showed to decrease CH_4 above 20 g/kg (Jayanegara *et al.*, 2011). Petlum *et al.* (2019) reported that inclusion of *Siamese* neem suppressed CH_4 output at inclusion levels of 2, 4 or 6 mg/100 g DM, while supplementation of *Leucaena* leaves showed reductions on CH_4 production at 6 mg/100 mg DM of supplementation

Breeding and Genetic Improvement

Prioritizing on the selection of certain traits in animal that can ascertain a drastic decrease in methane gas production is the most potential way to consider. Improving livestock performance was facilitated through a high precision breeding in genetics. The changes in genetics are cumulative and permanent; it is therefore an alternative which is attractive for reducing or targeting the GHG emissions in ruminant animals (González-Recio *et al.*, 2020; Manzanilla-Pech *et al.*, 2021). A research from New Zealand revealed that breeding that targeted a reduced emission in sheep has no any impact on productivity and health (Sharon *et al.*, 2022). In Canada, marketing of dairy semen with high methane efficiency traits is common among the traders, whereas in Ireland, beef farmers are being paid to take part in genomic programmes (Nienke *et al.*, 2024).

Land Resources Management

Land use and livestock management practices are most real way of mitigation. At maximum, Thornton and Herrero (2010) opined that the mitigation potential of livestock and pasture management is projected to account for approximately 7% of the global potential of mitigation from agriculture by 2030. Possible actions include improved pastures adoption, improving ruminant diets and breeds, changing the stocking rate, and reducing the

grazing intensity. Havlík *et al.* (2014) pointed that achieving a noticeable emission reduction will be through changing to livestock production that is more efficient and less land-demanding.

Enteric Fermentation

As explained earlier, the main figure of ruminant methane emissions is from enteric fermentation which can be managed through the management of diets and genetics at large. The findings of Knapp *et al.* (2014) showed that a strategic nutrition and feeding such as forage digestibility improvement can lessen enteric methane production by minimum of 2.5–15% per unit of milk produced and an increased reductions can be achieved if alternatively combine the approach of genetic and management. Antibiotics, lipids, grain, and ionophores are feed additives and supplement that have also been playing a role in decreasing the enteric methane gas emissions by altering the microbial ecology of the intestine thereby increasing carbon and nitrogen retention by the animals (Caro *et al.*, 2016).

Manure Management and Biogas Production

Making changes in the practice of storing manure such as short storage duration, reduced storage temperature and water, and solid - liquid separation can significantly reduce the amount of GHG emissions from the manure (Montes *et al.*, 2013). Normally microorganisms break down manure through anaerobic digestion in the absence of oxygen thereby producing a mixture of biogas (mainly CH_4 and CO_2) and digestate that can be captured and used as bioenergy to produce heat or electricity. Anaerobic digestion is surely a way that can lead to an over 30% reduction in GHG emissions

when compared to traditional manure treatment (Battini *et al.*, 2014).

The production of biogas can be from nearly all kinds of biological materials deriving from the agricultural sectors and other various industrial and domestic organic waste streams. Biogas production and use, is normally seen as a clean and sustainable energy generation option that can certify a significant GHG savings when compared to fossil fuels (Ojeu, 2009). This positions biogas as a reliable energy resource in the energy transition to green and low carbon energy and electricity mix (Kabeyi and Oludolapo 2020).

CHALLENGES AND KNOWLEDGE GAPS

Socio-economic Barriers to Adoption

Several factors such as awareness and attitudes of the farmers play a vital role in adopting the mitigation strategies of greenhouse gas emissions. For example, study revealed that in Ireland, only 52% of the farmers population were aware of greenhouse gas emissions and only 35% out that have indicated their interest to adopt an emissions advisory tool (May, 2019). Similarly, a study from United Kingdom reported that the limited knowledge of the farmers about the relationship between the environment and the agriculture has seriously affects their desire to accept the beneficial environmental practices and innovation attitudes (Jantke *et al.*, 2020). Moreover, investigations in Germany on the knowledge and attitudes of farmers towards agricultural GHG emissions assessed that factor such as insufficient information makes farmers to shortly fail in adopting the strategies of emissions reduction despite of their knowledge of climate change and interest of adopting the

sustainable practices (Jantke *et al.*, 2020).

Previous study highlighted the role of digital technology as important agricultural component for climate change mitigation especially when combined with active efforts of participation from farmers and stakeholders (Blasundram *et al.*, 2023). Another study from Ireland highlighted the conservative attitude and insufficient knowledge as the factors that negatively affect the interest of the old farmers to adopt new practices (O'Shea *et al.*, 2018). Additionally, it was recognized that the level of awareness of emissions is the non-economic key factor that is influencing the voluntary adoption rate of feasible mitigation measures (Adenaeuer *et al.*, 2020).

Trade-offs between productivity and sustainability

Addressing the impact of climate change has become as a major challenge of the current century, despite the facts that the world continues to face other pressing key issues such as reducing global poverty and economic inequalities among others. According to Taghizadeh-Hesary and Yoshino (2022), global investments in renewable energy and energy efficiency has declined by 1% in 2017 and 3% in 2018, respectively. This downward trend poses a threat to the progress made under UN Climate Change Conference (COP21) Paris agreement. Additionally, substantial cross-country evidence suggests that economic growth is typically linked to increased carbon dioxide emissions the primary anthropogenic greenhouse gas- at least up to a certain level of economic development (Jacob *et al.*, 2014).

FUTURE DIRECTION AND RESEARCH NEEDS

Innovations in low-emission livestock system

Cattle farming are now a central to climate change discourse, as livestock production is estimated to contribute between 12% and 14.5% of global greenhouse gas emissions (Gerber *et al.*, 2013; FAO, 2023). Nevertheless, properly managed grazing ruminants have the potential to offset some of these emissions by enhancing carbon sequestration in soils and above-ground vegetation often referred to as “flux fixation” as well as through ecological restoration (Mattila *et al.*, 2021; Manzano *et al.*, 2023). Moreover, several strategies exist to lower the emissions intensity of ruminant farming, which is vital for realizing goals related to zero hunger, better nutrition, and sustainable agriculture (FAO, 2023).

Integration of Climate-Smart Agricultural Practices

Climate Smart Agriculture (CSA) aims to undertake the challenges in agricultural development by increasing agriculture productivity in an environment-friendly manner reducing the greenhouse gases emissions and ensuring food security. The CSA practices, therefore, can assist agriculture adapt to climate change, reducing climate change, and sustainably enhance productivity (Nagar *et al.*, 2023). It provides enablers in which specific technologies and practices can be assessed in terms of their impacts, especially relative to national development and food security in the context of the changing climate (Barasa *et al.*, 2021). Climate-smart agriculture is therefore linked with many sustainable development goals as it has an extensive impact across the spectrum,

which is beyond the defined scope of climate change and adaptation (Aishwarya and Kumar, 2024). This holistic strategy seeks to prevent the negative impacts of climate change, respond to their occurrences, and consequently enhance the probability of improved efficiency in agriculture (Balogun *et al.*, 2024).

Role of Policy, Education and Stakeholders Engagement

Education is fundamental in mitigating climate change as it raises awareness, cultivates critical thinking, and encourage sustainable behaviors. Climate change education (CCE) is crucial for developing ethical frameworks and scientific understanding, which are crucial for preventing and adapting to climate impacts (Tripathy *et al.*, 2024). The urgency of integrating climate education across all sectors is underscored by the need for immediate action against environmental threats, advocating for a collaborative approach to empower global citizenship and address shared challenges (Riaz *et al.*, 2024).

CONCLUSION

This study highlighted the influence of livestock production as a major source of greenhouse gases emissions; mainly methane and nitrogenous oxide which are released from enteric fermentation, manure management and fertilizer use. It also stressed on the environmental impacts of land use changes such as deforestation. Manure improvements, source of feeding and grazing management were recommended as greenhouse gas emissions mitigating strategies. Coordinated research efforts were advocated to reduce emissions and move towards more sustainable livestock production.

REFERENCES

Aan den Toorn, S.I., Worrell, E. and Broek, M. (2020). Meat, dairy, and more: Analysis of material, energy, and greenhouse gas flows of the meat and dairy supply chains in the EU28 for 2016. *Journal of Industrial Ecology* (24): 601–614. doi: 10.1111/jiec.12950

Abbass, K., Qasim, M. Z., Song, H., Murshed, M. and Mahmood, H. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. *Environ Sci Pollut Res* 29 (28): 42539–42559. <https://doi.org/10.1007/s11356-022-19718-6>

Adams, S. and Acheampong, A.O. (2019). Reducing carbon emissions: the role of renewable energy and democracy. *Journal of Cleaner Production*, 240: 118245. <https://doi.org/10.1016/j.jclepro.2019.118245>

Adenaeuer, L., Breen, J. and Hayden, A. (2020). Insights in overcoming the non-adoption of voluntary agricultural GHG mitigation measures in Ireland. pp. 1–26.

Aishwarya, K. and Kumar, P. (2024). *A Perspective Way to Climate Smart Agriculture*. In P. Kumar & Aishwarya (Eds.), Technological Approaches for Climate Smart Agriculture (pp. 9–24). Springer International Publishing. https://doi.org/10.1007/978-3-031-52708-1_2

Aydinalp, C. and Cresser, M.S. (2010). The effects of climate change on agriculture. *Agricultural and Environmental Sciences*, 5: 672–676.

Barasa, P., Botai, C., Botai, J. and Mabhaudhi, T. (2021). A Review of Climate-Smart Agriculture Research and Applications in Africa. *Agronomy*, 11: 1255. <https://doi.org/10.3390/agronomy1106125>

Battini, F. Agostini, A. Boulamanti, A.K. Giuntoli, J. and Amaducci, S. (2014). Mitigating the environmental impacts of milk production via anaerobic digestion of manure: Case study of a dairy farm in the Po Valley. *Science of the Total Environment*, (481): 196–208.

Beauchemin, K. A. (2009). Dietary Mitigation of Enteric Methane from Cattle. CAB Rev. 2009, 4. Available online: <http://www.cabi.org/cabreviews/review/20093276253>

Beauchemin, K. and McGinn, S. (2006). Methane emission from beef cattle: effects of fumaric acid, essential oil and canola oil. *Journal of Animal Science*, (84):1489–1496.

Bekele, W., Guinguina, A., Zegeye, A., Simachew, A. and Ramin, M. (2022). Contemporary Methods of Measuring and Estimating Methane Emission from Ruminants. *Methane*, (1):82–95.

Borrelli, P., Robinson, D.A., Panagos, P., Lugato, E. and Yang, J.E. (2020). Land use and climate change impacts on global soil erosion by water (2015–2070). *Proceedings of the National Academy of Sciences*, 117(36):21994–22001.

Bruinsma, J. (2003). *World Agriculture: Towards 2015/2030: An FAO Perspective*. Earthscan, London,

Caro, D., Kebreab, E. and Mitloehner, F.M. (2016). Mitigation of enteric methane emissions from global livestock systems through nutrition strategies. *Climate Change*, 137: 467–480.

Castillo, C., Benedito, J.L. and Mendez, J. (2004). Organic acids as a substitute for monensin in diets for beef cattle. *Animal Feed Science and Technology*, (115): 101–116.

Chalise, S. and Naranpanawa, A. (2016). Climate change adaptation in agriculture: A computable general equilibrium analysis of land-use change in Nepal. *Land Use Policy*, (59): 241–250.

Crippa, M., Solazzo, E., Guizzardi, D., Monforti-Ferrario, F. and Tubiello, F.N. (2021). Food systems are responsible for a third of global anthropogenic GHG emissions. *Nature Food*, 2(3):198–209.

Davis-Reddy, C. (2018). Assessing vegetation dynamics in response to climate variability and change across sub-Saharan Africa. Stellenbosch: Stellenbosch University.

FAO (2013). *Tackling Climate Change through Livestock: A global assessment of emissions and mitigating opportunities*. Food and Agricultural Organization of the United Nations Rome, 2013.

FAO (2006). *Livestock's Long Shadow. Environmental Issues and Options*. Food and Agriculture Organization of the United Nations, Rome, Italy

FAO (2023). GLEAM 3.0 Assessment of

greenhouse gas emissions and mitigation potential. In: *Global Livestock Environmental Assessment Model (GLEAM)*. Available at: https://foodandagricultureorganization.shinyapps.io/GLEAMV3_Public

Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. and Tempio, G. (2013). Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Rome: FAO; Available from <http://www.fao.org/3/a559i3437e.pdf>

González-Recio, O., López-Paredes, J., Ouatahar, L., Charfeddine, N., Ugarte, E., Alenda, R. and Jiménez-Montero, J.A. (2020). Mitigation of greenhouse gases in dairy cattle via genetic selection: 2. Incorporating methane emissions into the breeding goal. *Journal of Dairy Science*, 103(8): 7210-7221.

Gopalakrishnan, T., Hasan, M.K., Haque, A.S., Jayasinghe, S.L. and Kumar, L. (2019). Sustainability of coastal agriculture under climate change. *Sustainability*, 11(24):7200.

Grossi, G., Goglio, P., Vitali, A. and Williams, A.G. (2019). Livestock and climate change: Impact of livestock on climate and mitigation strategies. *Animal Frontiers*, (9): 69–76.

Havlík, P., Valin, H.J.P., Herrero, M., Obersteiner, M., Schmid, E., Rufino, M.C., Mosnier, A., Thornton, P.K., Böttcher, H. and Conant, R.T. (2014) Climate change mitigation through livestock system transitions. *Proceedings of the National Academy of Sciences*, 111, 3709–3714.

Herrero, M., Thornton, P.K. (2013). Livestock and global change: Emerging issues for sustainable food systems. *Proceedings of the National Academy of Sciences*, (110): 20878–20881.

Herrero, M., Thornton, P.K., Kruska, R. and Reid, R.S. (2008). Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. *Agriculture, Ecosystems and Environment*, (126): 122-137.

IPCC (2007). Agriculture. In B. Metz, O.R.P. Davidson, R. Bosch, R. Dave, L. A. Meyer (eds.) *Climate Change 2007: Mitigation* (Cambridge, New York: Cambridge University Press), Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007: 497 - 540.

Jayanegara, A.E., Wina, C.R., Soliva, S., Marquardt, M., Kreuzer, F., and Leiber, F. (2011). Dependence of forage quality and methanogenic potential of tropical plants on their phenolic fractions as determined by principal component analysis. *Animal Feed Science and Technology*, 163 (2–4): 231-243.

Kabeyi, M.J.B. and Oludolapo A.O. (2020). The potential of power generation from municipal solid waste. *2nd African International Conference on Industrial Engineering and Operations Management*, 2020, Harare, Zimbabwe.

Knapp, J. R., Laur, G. L., Vadas, P. A., Weiss, W. P. and Tricarico, J. M. (2014). Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. *Journal of Dairy Science*, 97: 3231–3261.

La, H., Hettiaratchi, J.P.A., Achari, G., Hettiaratchi, J.P., Achari G. and Dunfield P.F. (2018). Biofiltration of methane. *Bioresource Technology*, (268): 759–772. doi: 10.1016/j.biortech.2018.07.043

Maindi, N.C., Osuga, I.M. and Gicheha, M.G. (2020). Advancing climate smart agriculture: Adoption potential of multiple on-farm dairy production strategies among farmers in Murang'a County, Kenya [Article]. *Livestock Research for Rural Development*, 32(4). Retrieved November 8, 2023, from <http://www.lrrd.org/lrrd32/4/izzac32063.html>

Manzanilla-Pech, C.I.V., Stephansen, R.B., Difford, G.F., Løvendahl, P. and Lassen, J. (2022). Selecting for feed efficient cows will help to reduce methane gas emissions. *Frontiers in Genetics*, 13: 885932.

McAllister, T.A. and Newbold, C.J. (2008) Redirecting rumen fermentation to reduce methanogenesis. *Australian Journal of Experimental Agriculture*, (48): 7–13.

Montes, F., Meinen, R., Dell, C., Rotz, A., Hristov, A.N., Oh, J., Waghorn, G., Gerber, P.J., Henderson, B., Makkar, H.P.S., (2013). SPECIAL TOPICS—Mitigation of methane and nitrous oxide emissions from

animal operations: II. A review of manure management mitigation options1. *Journal of Animal Science*, 91: 5070–5094.

Mullins, J., Zivin, J.G., Cattaneo, A., Paolantonio, A. and Cavatassi, R. (2018). The adoption of climate smart agriculture: the role of information and insurance under climate change. In: Lipper, L, McCarthy N, Zilberman D, Asfaw S, Branca G (eds) Climate smart agriculture. *Natural Resource Management and Policy*, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-319-61194-5_16

Nagar, A., Namdeo, S., Verma, B., Shrivastava, S. and Sarkar, R. (2023). Role of Climate - Smart Agriculture towards Sustainable Food Production. *International Journal of Environment and Climate Change*, 13: 465–472.

Ngarava, S., Zhou, L., Nyambo, P., Chari, M.M. and Bhungeni, O. (2023). Aquaculture production, GHG emission and economic growth in Sub-Saharan Africa. *Environmental Challenges* 12(100737):1–12.

Nienke, S., Hinayah, R.O., Kerry, H., Tatiane, C.S. and Garson, A.O. (2024). The Resilient Dairy Genome Project—A general overview of methods and objectives related to feed efficiency and methane emissions. *Journal of Dairy Science*, 107(3): 1510–1522

O'Shea, R., O'Donoghue, C., Ryan, M. and Breen, J. (2018). Understanding farmers: From Adoption to Attitudes (2018), 10.22004/ag.econ.276203

Outhwaite, C.L., McCann, P. and Newbold, T. (2022). Agriculture and Climate Change are reshaping insect biodiversity worldwide. *Nature*, 605(7908): 97–102.

Patra, A.K. (2014). Trends and Projected Estimates of GHG Emissions from Indian Livestock in Comparisons with GHG Emissions from World and Developing Countries. *Asian-Australasian Journal of Animal Science*, (27): 592–599.

Paustian, K., Antle, M., Sheehan, J. and Eldor, P. (2006). Agriculture's Role in Greenhouse Gas Mitigation. Washington, DC: Pew Center on Global Climate Change.

Petlum, A.P. Paengkoum, J.B. Liang, K. Vasupen, S. Paengkoum (2019). Molecular weight of condensed tannins of some tropical feed-leaves and their effect on *in vitro* gas and methane production. *Animal Production Science*, 59(12): 1-7.

Popp, A., Calvin, K., Fujimori, S., Havlik, P. and Humpenöder, F. (2017). Land-use futures in the shared socio-economic pathways. *Global Environmental Change*, (42): 331–345.

Riaz, S.M.F., Sohail, M., Haroon, M.U., Rashid, Nawaz, Vardah, M.F., Asif, Majeed, Y., Sahar, R., Khan, A.G., Farooqi, Z.U.R., Ma'arij, A., Ilić, P. and Jamal, M. (2024). Global Insight Into National Climate Mitigation Priorities Within the Framework of Climate Education. *Advances in Educational Marketing, Administration, and Leadership Book Series*, doi: 10.4018/979-8-3693-4103-2.ch005.

Robinson, S.A. (2020). Climate change adaptation in SIDS: a systematic review of the literature pre and post the IPCC Fifth Assessment Report. *Wiley Interdiscip Reviews: Climate Change*, 11(4): 653. <https://doi.org/10.1002/wcc.653>

Salem, A.Z.M., Khalif, A.E. and Elghandour, M. M. (2014). Effect of increasing levels of seven tree species extracts added to a high concentrate diet on *in vitro* rumen gas output. *Animal Science Journal*, (85): 853–860.

Sharon, M.H., Wendy, E.B., Timothy, P.B., Gordon, J.G., Sara, E., Brooke, B., Cesar, S.P., Janine, W., Arjan, J., Emily, A.Y., Kevin, K., Natalie, K.P., Ken, G.D., Peter, H.J., John, C.M. and Suzanne, J.R. (2022). Impact of breeding for reduced methane emissions in New Zealand sheep on maternal and health traits. *Sec. Livestock Genetics*, 13 - 2022 | <https://doi.org/10.3389/fgene.2022.910413>

Smith, P., House, J.I., Bustamante, M., Sobocká, J. and Harper, R. (2016). Global change pressures on soils from land use and management. *Global Change Biology*, 22(3):1008–1028.

Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M. and de Haan, C. (2006). Livestock's Long Shadow: Environmental

Issues and Options. Rome: Food and Agriculture Organization of the United Nations.

Thornton, P.K. and Herrero, M. (2010). Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. *Proceedings of the National Academy of Sciences*, 107: 19667–19672

Tripathy, A.B., Swain, B. and Mishra, M. (2024). Environmental Sustainability for a Sustainable Future and Role of Education (In Climate Change Perspectives). doi: 10.53555/kuey.v30i5.5952.

Tubiello, F.N., Salvatore, M., Rossi, S., Ferrara, A., Fitton, N. and Smith, P. (2013). The FAOSTAT database of greenhouse gas emissions from agriculture. *Environmental Research Letters*, 8:015009. doi: 10.1088/1748-9326/8/1/015009.

U.S. (2015). Environmental Protection Agency Overview of Greenhouse Gases. [(accessed on 30 June 2022)];2015 Available online: <https://www.epa.gov/ghgemissions/overview-greenhouse-gases>.

U.S. EPA. (2006). Methane: sources and emissions. Available online: <http://www.epa.gov/methane/sources.html> [accessed 24 October 2007].

U.S. EPA. (2007b). Ruminant Livestock: Frequent Questions. Available online: <http://www.epa.gov/methane/rlep/faq.htm> [accessed 24 October 2007].

UN (2008). World Population Prospects: The 2008 Revision. New York, NY, USA. www.esa.un.org/unpp

Vázquez-Carrillo, M.F., Montelongo-Pérez H. D., González-Ronquillo M., Castillo-Gallegos E. and Castelán-Ortega O. (2020). Effects of Three Herbs on Methane Emissions from Beef Cattle. *Animals*. 2020;10:1671. doi: 10.3390/ani10091671.